Two-dimensional generalization of the Muller root-finding algorithm and its applications
نویسندگان
چکیده
We propose a new algorithm for solving a system of two nonlinear transcendental equations with two complex variables based on the Müller algorithm. The two-dimensional Müller algorithm is tested on systems of different type and is found to work comparably to Newton’s method and Broyden’s method in many cases. The new algorithm is particularly useful in systems featuring the Heun functions whose complexity may make the already known algorithms not efficient enough or not working at all. In those specific cases, the new algorithm gives distinctly better results than the other two methods. As an example for its application in physics, the new algorithm was used to find the quasi-normal modes (QNM) of Schwarzschild black hole described by the Regge-Wheeler equation. The numerical results obtained by our method are compared with the already published QNM frequencies and are found to coincide to a great extent with them. Also discussed are the QNM of the Kerr black hole, described by the Teukolsky Master equation.
منابع مشابه
The Quasi-Normal Direction (QND) Method: An Efficient Method for Finding the Pareto Frontier in Multi-Objective Optimization Problems
In managerial and economic applications, there appear problems in which the goal is to simultaneously optimize several criteria functions (CFs). However, since the CFs are in conflict with each other in such cases, there is not a feasible point available at which all CFs could be optimized simultaneously. Thus, in such cases, a set of points, referred to as 'non-dominate' points (NDPs), will be...
متن کاملOn two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملAn Algorithm for Two Dimensional Cutting Stock Problems with Demand
In this paper, two-dimensional cutting stock problem with demand has been studied.In this problem, cutting of large rectangular sheets into specific small pieces should be carried out hence, the waste will be minimized. Solving this problem is important to decrease waste materials in any industry that requires cutting of sheets. In most previus studies, the demand of pieces has not been usually...
متن کاملAn Algorithm for Two Dimensional Cutting Stock Problems with Demand
In this paper, two-dimensional cutting stock problem with demand has been studied.In this problem, cutting of large rectangular sheets into specific small pieces should be carried out hence, the waste will be minimized. Solving this problem is important to decrease waste materials in any industry that requires cutting of sheets. In most previus studies, the demand of pieces has not been usually...
متن کاملOn the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications
In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1005.5375 شماره
صفحات -
تاریخ انتشار 2010